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ABSTRACT

This paper considers the waiting-time of a driver on a secondary
road whe wishes to enter or cross a Primary traffic stream, given
that he will do so only when the spacing to the next vehicle is at
least as great as some fixed critical gap. The initial waiting-time
distribution and its first two moments are obtained under the
assumption of arbitrary starting-up and headway distributions of
the primary traffic stream. Under the assumption that only one
car may enter the intersection per gap, the distribution of succes-
sive waiting times (the inter-gap distribution) and its moments are
obtained. The counting distribution of the Passing of gaps is then
used to describe the numbers of cars which leave the secondary
road during a fixed interval of time. Various asymptotic and
limiting results are demonstrated, together with the special results
obtained when the traffic is Poisson. The necessary modifications

for other gap criteria are also indicated.




WAITING FOR A GAP IN TRAFFICY

Introduction

The phenomenon of waiting to enter or cross a stream of traffic is a
familiar one to all of us. Instead of the usual queueing situation in which
the delay is due to the completion of several service tasks of variable
length, the delay in entering a stream of traffic is caused by the successive
passage of a varying number of inter-car spacings, each of which is not
large enough to allow entry. Thus, in this problern, the main stochastic
sequence (the stream of traffic) acts like a sieve, allowing one to enter only
when a spacing greater than or equal to some critical length appears. This
critical length depends upon the velocity of the main stream, the reaction
time of the waiting driver, his acceleration ability, the geometry of the
intersection, and so forth.

In this paper we shall describe a simple recurrent event model which
includes many of the features of the realistic situation. In addition to
deriving the first pas sage and recurrence distributions of the waiting time,
we show the first two moments of these distributions and consider their
asymptotic forms. By deriving the counting distribution of 'large-enough'
gaps, the emptying of an infinite queue on the secondary road is also des-

cribed. Explicit results are presented for the case of Poisson traffic, and

*
This paper was originally presented at the Second Western Joint Meeting

of the Operations Research Society of America and Institute of Manage-
ment Sciences, Monterey, California, April 15-16, 1960, while the author
Was an employee of Broadview Research Corporation. At that time only a
summary of the formulas presented here was distributed [5]). Several
revisions in notation have been made in this complete version of the paper
to conform with a forthecoming report by Oliver [ 11], and a new section
has been added to demonstrate the effect of variable gap criteria.




the necessary modifications for other gap criteria are Presented.

Besides its use in de scribing delays of secondary traffic, this model has

applications in scheduling traffic-actuated signal lights, and in describing car

passing and left-turn qQueueing phenomena. Little [71(8] has applied related

results to the location of retail stores near an intersection, under the assump-

tion that customers tend to Prefer stores with a minimum of delay in entering

and leaving the parking area.

The Model

Consider the idealized situation of Figure 1, where Buccessive cars in a

single lane of traffic pass the intersection at times T T Ty e
measured from the measurement origin To= 0. The possible effect of upstream

dynamics, or the "bluffing' of the waiting driver, are ignored.
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Figure 1 -- Model Description
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We neglect the dimensions of passing cars and assume that the instants of
arrival at the intersection are generated by a renewal process, i.e., the

non-negative time spacings

o =0t =Tm sty =TTy et =T e

are random variables from a known interevent distribution. The time

spacings t, ty, .-, tn' .. are referred to as headways in traffic studies.

In order to retain generality about the measurement origin in the sequel,
we shall assume that t, is a sample from a starting-up distribution density
d(t), and that tl' tz, 2. tn, ... are independent samples from a headway
distribution density a(t).

It is assumed that the driver on the secondary road will enter or cross
the main stream of traffic if and only if the time interval, until the next car
passes, is greater than or equal to some critical gap size, T. This critical
gap is assumed to remain the same for every driver, and not subject to
change because of impatience.

If a car on the secondary road begins to wait at time zero, then we define

his waiting time, w, as

w =0 ift0_>T
w:to iftOST,tlzT
w=t0+t1 if to < T, t1< T, tziT (1)
n
= X t. i . b
w i_-.otl if to < T, t1< O tz<T, . tn<T, tn+l->~ T .

Thus, the wait will be zero if the driver is able to enter the intersection be-

fore the first car arrives; if this initial headway is not large enough, we
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define his waiting time as the time until the beginning of the first gap, i.e.,
the beginning of the first inter-car headway not less than T.

Simple models of this type were first considered by Garwood [ 3], Raff
[12], and Tanner [13], in order to derive the waiting-time distribution for
Poisson traffic. Among their results were the formulas of Equations (22),
(23), and (24). Mayne [9] was the first person to consider arbitrary head-
way distributions under the assumption of beginning measurements '"at
random," obtaining results which are equivalent to Equation (16), and its
associated moments.

Since this paper was presented [5], Weiss and Maradudin [ 14] have
pPresented a generalization of this model, in which a certain probability of
entering the intersection is associated with each inter-vehicle headway. The
results obtained, while more complicated, permit a more realistic descrip-
tion of driver acceptance criteria. Results which are generalizations of (16),
(36), and (37), together with their moments are obtained. Weiss and
Maradudin have also made a pPreliminary formulation of the problem of cor-
related headways. In the last section of this paper is indicated a simple
manner in which our results can be generalized to include variable gap
criteria.

R. M. Oliver [ 11] has taken all of the results for a critical gap criteria
of 2 T, unified the notation and formulas, and presented new results on the
distributions of blocked and unblocked periods. The emphasis of his paper
is upon the gap and block-producing mechanism of the Primary traffic stream.
with the waiting-time pProblem treated as a special secondary process. Be-

cause of the importance of this approach, several revisions in nétation have

been made in the Present paper.




Notation

The following notation will be used: Let f(t) be any distribution density,
which may possibly have discrete components (represented by impulses or
Dirac-delta functions).

Then the tail cumulative distribution function will be represented by F(t).

o0
F(t) = g f(x) dx (2)
t-

The truncated distribution density, f(t;T) is given by:

f(t;T)

i(t) 0<t< T
- (3)

0 T<t

Notice that the total area under f(t;T) is just 1- F(T).

We shall use a tilde and the argument s to denote a LaPlace transform,

viz
= o]
f(s) =L [£(t)] = 5 fit) € 5t qt (4)
0

We shall use the convolution notation
* ~1)%
A5 = 10 D%y % e M2y BY . Ra (5)

where the convolution operation * is defined as

t

f(t) * g(t) = S f(x) g(t-x) dx (6)
0

and for convenience we define

¥ = 1o (7)




We shall use v, and Ufz to denote the mean and variance of the distribu-
tion density f(t); where no confusion results we shall eliminate the sub-
script on the moments of the mainstream headway distribution, a(t). If
the mean is conditional upon the values of the random variable being less

than some value T, we add that value as an argument; i.e., "f(T) is the

mean of the normalized truncated distribution [1 -F(T)]—1 £(t;T).

The Distribution of Initial Wait

The measurement origin and the successive Passage of automobiles
through the intersection Presents a series of Bernoulli trials, with proba-
bilities D(T), A(T), A(T), .... of success on the ofh 1% 2R
trials. Hence the pProbability of the initial waiting time terminating at the
n® trial (i.e., at time T ) 18 just [1-D(T)] [A(T)][1-a(T)]™"}
(n=1, 2, ...), and probability D(T) of terminating at the origin.

If we use q(t) for the distribution density of initial wait we see that

it has a discrete component at zero, since

Pr {w:O} = D(T).

If, cn the other hand, the waiting time terminates on the first trial,
the initial headway ty: must have been less than T, and hence the
(normalized) distribution of waiting time must be d(t;T) [1- D(T)]-:l .

Similarly, if the waiting time terminates on the nth trial, the head-
ways tg, t;, tys ... t,.1 ™ust all be less than T, and the normalized

distribution of waiting time is

{dlt;T) [1 -D(T)]'l} * {a(n-l)*(t;T) [1 -A(T)]“‘l} (n> 2)

gsince w=t0+t1+t2+.... t




If these normalized waiting time distributions are multiplied by the
probabilities of success on the corresponding trials and summed, we

obtain:

[ <]

q(t) = D(T) 6(t) + d(t;T) * [1 + Z aj*(t;T)J A(T) (8)
j:

1

where 6(t) is the Dirac-delta function. Thus equation (8) is the distribu-
tion density of initial wait at the intersection until a gap at least as large
as T appears in the main stream of traffic.

By taking transforms, and assuming series summability, we find

the more compact expression:

als) = D(T) + dls;T) A(T)
17;(3;'[‘)

(9)

The advantage of this representation is that the moments of q(t) are avail-
able through differentiation of the transform.

For example,

> e} 7
lim q(s) = a(t)dt = piT) + L1 =DIT)) A(T) _ |
A(T)
s =0+
0
as it should.
The mean initial wait is
= T T
v = lim [- %ﬂ] = gt d(t) dt + [1-D(T)] [A(T)]-lyt a(t) dt
T s —0+ = 0 )

(10)

We may rewrite this in a more suggestive form as




%= [1-Dm] [om o 1AM mn ],

where [1- A(T)] /A(T) is mean number of cars Passing after the first one,

given that at least one car passes before the wait is ended.

The mean squared initial wait is

(11)
o T T T
ol + ()% = tim [d—c}é“_’ J: _‘gtzd(t) at + e [‘gt d(t) dt ] D;t a(t) dt:)
1-D(T Tz 2[1-D(T 3 ‘
+ [&(-fﬂl] ‘gt a(t) dt + [T'I-')](Z—)L[‘S;ta(t) dt] .

Different Measurement Origins

The choice of the starting-up density, d(t), depends upon the relation-

ship of the origin of measurement relative to the traffic stream.

In the simplest case, waiting time begins just after another car has

p:assed by, and d(t) = a(t). We shall use the special notation b(t) for the
wait distribution in this case. We find from (9) the transform of the waiting

distribution to be:

bls) = — AT (12)
1 - a(s;T)

which has a mean

T
S\t a(t) dt
¥, = 0 = [EA‘-’(‘%_)] »wT) | (13)

and a variance




T

2 S ¢4 a(t) dt 2

Another important case is that in which the waiting time begins at a
random moment relative to the main stream of traffic. One can show (see,

for example, Ref.[6] ) that the correct starting-up density to use is:

Aeyp=ult) = #- L A@) . (15)

For starting to wait ''at random', we shall use the special notation w(t)

for the initial waiting time distribution density. We have

wi(s) = U(T) + w , (16)
1. a(s;T)

with the starting distributions defined through (15). Expressions for the
moments of w(t) can be developed completely in terms of moments of the
headway distribution, but are not particularly revealing.

Another possibility occurs when the measurement origin is a fixed

time 7T after the time at which the last previous car passed the inter-

section. In this case, one should use

d(t) = alt + 7)/A(T) t >0 (17)

Finally, it is sometimes a convenience to begin measurements at a

fixed time T after the time at which some previous car passed the inter-

section, no measurements having been taken in the interim period. It can

be shown in this case [6] that the starting-up density

d(t) = a(tf7) (18)




has the double LaPlace transform

o ;(sl) B r:(sz)
a.(s1 Isz) =

(19)
(52- sl) [1 -a(sz)]

Another possible starting-up distribution will be considered in the section

on inter-gap spacings.

Poisson Traffic

The special case of Poisson traffic is of interest, both theoretically
and practically, since headway distributions in freely flowing, sparse
traffic are often found to be close to exponential [1]. Furthermore, it
turns out that for Poisson traffic all of the starting-up densities (15), (17),
and (19) are equivalent to assuming d(t) = a(t)! Thus, for all of these
measurement origins, we may obtain the distribution of initial waiting

time from (12), and from the Poisson inter-event density:

a(t) = X exp(-At) = LA(t) (t> 0) (20)

-AT
~ ~ A
(s) = W(s) = (8N e~ (21)
s +\e €
which gives
-AT

b(t)

w(t) (22)

n
m
O
-—
(o
~—




BT [ e ] rses w
=3\T [ A (t-2T) )\Z(t-ZT)2 2T < t <
+\e BN R o =t

2 2 3 3
= xe"”‘T[ L (;'!3'1‘) + 2 (t3"?'r) :’ 3T< T< w

------------

Each successive term is added only in the range indicated on the right.
This distribution was first obtained by Raff [12] and Tanner [13], and
later obtained in different ways by other investigators, [4] and [7].

The continuous portion of (22) is shown in Figure 2 for AT = El, i,
and 2. It consists of Piecewise-continuow curves of length T, which are

Buccessively constant, straight-line, parabolic, cubic, etc.

The mean initial wait is given by (13) as:

w o=y =NHAT o gy (23)
a1 [ 21?33 N % = 5
~ o R S
z)\'l GXT T — o

This formula was first obtained by Adams [1]. Thus, in Pojs son traffic,
the mean wait increases at least as the square of the critical gap, T, and
increases at least linearly with the mean traffic flow rate, \. For large

values of T, the mean wait increases exponentially.
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Continuous Portion of Probability Density of Initial
Wait, b(t) = w(t) in Poisson Traffic of Intensity X\

For AT =0.5 Pr t=0 =0.607 |, )\Ub = 0.149
AT =1.0 Pr t=0 =0.368 , )\Ub=0.713
AT =2.0 Pr t=0 =0.135 , .\Ub = 4, 389

At

AT = 1.0
_ AT = 0.5
Y
3
L 1 . ‘ :
£ 0.6 0.5 0.4 0.3 0.2
-

Figure 2
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The variance of mean wait in Poisson traffic is

el = a2 s A2 [c"‘T Sl 2AT e“] (24)
b w
3.3 4_4
-2 [a33T a\tr
~\ [ 37 + 3T + .J T —0
N eZ)‘T T — «

and it increases at least as the cube of the critical gap, T.

Limiting Results

The dependences on T just described turn out to be true for more

general traffic headway distributions.

Assume that a(t) and d(t) have expansions about the origin of the

form
© ) oo ¢
J:‘O J J: j=0 J JE .

From equations (10) and (11), we find, after some algebra

(26)
TZ -|T3 2 T4
Th_r.rz) '.!q = d0 ST + [Zdl +3dOaOJ_3_T + [de +6dlao+ 8doal+ IZdOaO ]4—,—-# .
and
(27)
lim e =24 T +| 6d. + 204 6a.° T* +] 124, + 604 40d.d_+70d
mesp A° 70 T 1 00~ °% |37 2 e L 0*1

' 5
2 2 |T

In the special case of starting to wait just after a car has passed

=132




T? 2773 37
Tll_l"ra Vb ZaO—Z—!-+[23.1+ 38.0 JT]— + [3a2+ l4alao+ lZaOJTr+ PR (28)
3 4 5
: 2 T 2| T $ 3|T
Th-?cl) oy = Zao 3Tt [6al+ 14aO ] T * [12a2+ 90alao+ lOOa.0 ’-5—,7 +... (29)

If measurements are begun at random relative to the main stream process,

2 3 4
. -1 T T 27 T
'I%lfol/w- v [2. toay Sy 4 [5a1+6a0] T +] (30)
and

3 4 5
. 2 -1 T -1, T -1, T
Th_x:% o =V [2 T +[l4ao-6v ] a7+ [58a1+ 100a0-20a0u ]3'T+ ] (31)
Thus, in all cases, the mean wait increases at least as the square of T and
the variance increases at least as the cube of T.
We also note from (26) and (27) the curious result

2
1i 6" = aflv T 32
o a [v,T] (32)

H

where a 2/3 dO 70

3/4 dy=0,d, ¢#0

2+n =
Ty dO-O, dl-O, dn_l—O, dn;!O

Relationships similar to (26) and (27) can also be for ""stuttering'' distributions
[6]. in which cars can arrive in geometrically distributed groups.

For very large values of the critical gap, T, the wait increases without
bound as A(T) vanishes. Asymptotic limits can be found directly from (10) and

(11), giving,
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lim oy o=v, s vaA (T) &= va (1) (33)

T~ o d

lim 0'(21 ~o2 + [% + 02 ATy 4 v2 A3(T) & v2A73(T) (34)
T~ oo

In the limit, (33) gives the intuitive expression for mean wait, since
A(T) is the average fraction of gaps which are large enough to permit entering
Or crossing the main stream.

Notice that the coefficient of variation

2 2 2
= 35
kq Uq 4 (Vq) =2

approaches unity for large values of T, even though the initial wait distribu-

tion is not exponential.

The Distribution of Spacings Between Gaps

Having derived the initial waiting time distribution, we are interested in
finding the waiting time for successive cars which are lined up in a queue on
the side road.

The simplest situation occurs when each car on the secondary road can
enter or cross the main stream of traffic when triggered by the Passing of a
€ar on the main stream; that is, even if a headway in the main stream is large
enough for 2, 3, 4, ... cars to enter the intersection, only one car is allowed.
This situation might arisé, for example, when visibility was limited to an
equivalent distance of less than 2T, and successive cars waited until a regener-
ation point of the main pProcess to make certain that there was headway enough

to enter. This model is also a very good approximation for the case where

~15-




*
A(2T) << A(T), as in heavy traffic.
To obtain the distribution of wait from the beginning of one gap to the
beginning of the next one, we use (9), with the starting-up distribution equal

to the distribution of a headway which is a gap, i.e.,

d(t) = g(t) = jﬂlgdj%ﬁizl (36)

Using the special notation, c(t), for the inter-gap spacing, we find its trans-

form to be:

;'—(s) "‘Z(S;T) (37)
1 - Z(S;T)

‘Z(s) S

This distribution density is zero in the interval {0, T), and thereafter exhibits
the piecewise continuous behaviour of b(t).

The mean inter-gap spacing is given by

1

v = VA" (T) , (38)

or, in other words, vc is just the limits of Vq for large T. This is also the
"intuitive' answer for the mean spacing between gaps. The variance of the

inter-gap spacing is given by
T
oZ +if =[¢2 + VZJA'I(T) + 2vA ¥(T) 5 ta(t) dt (39)
0

2 . .
where, as before, v and o are the mean and variance of the mainstream

headway distribution.

* It is possible to obtain some limited results in the case where more than
one car may enter; this topic will be the subject of a later report.
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For the limiting cases of small and large values of critical gap, T, we

obtain:
®y PYINY
lim v = u[1+a0T+[—2—+ao]T +...] (40)
T —0
a
lim <r2 = 62 + (az- vz)a T+ av + ——1(62-u2)+a2 [0'2-21/2] T2+ ...(41)
T —0 c 0 0 2 0
and
lim v = vA YT) (42)
T — oo c
lim  ¢®ar (e +08)a Y1) + v A 4T) = vBA 4T (43)
T — o

We notice that the coefficient of variation also approaches unity in limit, even
though c(t) is not exponential.

In the case of Poisson traffic,

)\e-)\Te-ST
) - S+)\e-)\Te-ST o
and we find:
c(t) = 0 0<t<T
N B [1] T<t< o
; ).e'Z)\T [ )\(t-.ZT) ] 2T < t< o

2 2.
+)\e-3\'r[ A (t2-3T) i

W
-
{A
o
1A
8

I A
=
IA
8

3 3
Cne T A iy 4T

This distribution is shown in Figure 3, for AT =1/2, 1 and 2. One finds

directly that:




At
Probability Density of Inter-Gap Spacing, c(t) [ .
in Poisson Traffic of Intensity \ j
For AT =0.5 v =1.649
C |I - 7
AT = 1.0 Ay =2.718 |
AT = 2.0 XVC = 7.389
/]I °
AT 22,0 .
/ |
|
!
-]
|
I|
|
Fo4
/‘f | *
.-"-fff
2
XT = 0.5 -
' 1
= - T + - - +- - 0
0.5 0.4 0.3 0.2 0.1 0
Figure 3
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v = X-le)‘T (45)
C
O'CZ = X-Z [eZXT - 2\T e)\T ] 3 (46)

The Counting Distribution of Gaps

We are now in a position to describe the emptying of a queue which is
waiting on the secondary road to enter or cross the main stream of traffic.
The wait of the first vehicle is a sample from the distribution q(t), and if
only one vehicle is allowed to enter the intersection per gap, successive
vehicles have additional delays which are samples from the inter-gap dis-
tribution, c(t)

Thus, the probability Pn(t) that exactly n cars from the secondary
road enter the intersection is just the counting distribution for the passage

of gaps. By a simple renewal argument,

{+ o]
By = { ataax = o (47)
t

t
Pl(‘t) % gq(x) C(t-x) dx = g(t) * C(t)
0

P,{t) = q(t) * C(t) * c(t)

P (t) = q(t) * C(t) * ¢ (™=D¥

or, in terms of the transforms,

;%(s)= .l:gﬂﬁl_ _ (48)
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B (s) = Ys) [—1—?&@] (48)

52(8) = q(s) [l;& Cs)
B (s) =J(s) [l—s—“i’] [t .

We can find the transforms of the first and second moments directly as:

~

LM - —als) (49)

s[1-C(s)]

Low + M%) = sl +cls) (50)
s[1 - c(s)]

where M(t), and D(t) are the mean and variance of the counting distribution.
Thus, after a choice of starting-up distribution, one has available the machinery
to calculate the counting distribution of gaps. This is a long and tedious pro-
cedure for Practically any headway distribution, however, and we shall i)e
content with indicating a few asymptotic results.

First, it is known that in the limit of very large observation times, the
state probabilities (47) approach normality [2][6]. It is also not difficult to

show (via (49) and (50) ), that

o v
. t DO 1 t
Lim  M(t) :~:T+[ﬁ7—+z-f’-—:!¢37— (51)
t c 2v c c
2
uc t
lim D(t)z[T] —— + constant (52)
t - Vc Vc

-20-




so that, in the extreme limit, we find that the number of cars which are

emptied from the secondary road is normally distributed, with mean and

variance
lim  M(t) & iv A(T) (53)
t—=owo
. 2t
lim  D(t) & k° L A(T) (54)
t — w ¢ ¥

We may interpret (53) as saying that the flow rate of gaps past the intersec-
tion is equal to the flow rate of cars in the main stream times the probability

that a given headway is a large enough gap.

*
Other Gap Criteria

In some applications, the simple criterion of "gap > T'" is not des-
criptive of actual behavior. Suppose, instead that we partition the headways
into two sets G (‘go'), and G ('don't go’),. 80 that the definition of waiting
time in Equation (1) becomes

w =0 if ty €G (55)

W=ty if tg G, t,€G

W=i=% ti if to, tl’ tneG, tzeG

This section was not part of the original paper [5].
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A reappraisal of the development of the formulas for waiting-time
distributions and their moments shows that this new gap criterion can be

incorporated in our results by redefining all truncated distributions as:

(t; T) 0 teG (56)

1]

f(t) teG

and all the tail distributions as:

F(T) = S‘f(t)dt (57)
teG

With these interpretations, all of the formulas (8) - (16) and (36) - (39)
are still valid.

Furthermore, it is possible to make the necessary modifications if
the criterion of gap acceptance is a probabilistic one. Suppose that a gap of
size t is ''large enough'' with probability a(t), and is not "large enough"
with probability 1 - a(t). Then these are just the probabilities of being in
set G or G, respectively, and the distribution which occur on the average

are obtained by redefining

f(t;T) = £{t) [1-a(t)] (58)
and
o0
F(T) = S\ a(t) £(t) dt . (59)
0

With these interpretations, all ‘of the formulas (8) - (16) and (36) - (39) hold,
with (12) - (16) and (36) - (39) duplicating the results of Weiss and

Maradulin [14].




10.

11.

12.

13.

14.

References

Adams, W.F., "Road Traffic Considered as a Random Series, " Journal
of the Institution of Civil Engineers, vol. 4, Nov. 1936. PpP. 121-T30.

Feller, W., An Introduction to Probability Theory and its A lica.tiom_!,
vol. 1, (2nd e i .

Garwood, F., "An Application of the Theory of Probability to the
Operation of Vehicular-Controlled Traffic Signals, " Journal of the
Royal Statistical Society {Supplement), vol. VI, no. I, 1940, pp. 65-77.

Galliher, H. P., private communication, May 31, 1956.

Jewell, W. S., "Waliting for a Gap in Traffic, " summary of results
presented at the Second Western Joint Meeting of the Operations Research
Society of America and the Institute of Management Sciences, Monterey,
California, April 15-16, 1960.

Jewell, W. S., "The Properties of Recurrent-Event Process, "
Operations Research Journal, vol. 8, no. 4, July-Aug. 1960. pp 446-472.

Little, J.D.C., ""Delays for a Driver in Poisson Traffic," Case Institute
of Technology, Oct. 12, 1959 (mimeo).

Little, J.D.C., "Approximate Expected Delays for Several Maneuvers by
a Driver in Poisson Traffic, " Operations Research Journal, vol. 9, no. 1,
Jan.-Feb. 1961. pp. 39-52.

Mayne, A. J., "Some Further Results in the Theory of Pedestrians and
Road Traffic," Biometrika, vol. 41, (1954). pp. 375-389.

Mayne, A. J., "Corrigenda, " Biometrika, vol. 45, (1958). p- 291.

Oliver, R. M., "Distribution of Gaps and Blocks in a Traffic Stream, "
Operations Research Center University of California, Berkeley. Res.
Report No. 9. (to appear)

Raff, M.S., "The Distribution of Blocks in an Uncongested Stream of
Automobile Traffic,'" Journal of the American Statistical A ssociation,
vol. 46, 1951.

Tanner, J.C., "The Delay to Pedestrians Crossing a Road, "
Biometrika, vol. 38, 1951. pp.- 383-392.

Weiss, G.H. and A. A. Maradudin, ""Some Problems in Traffic Delay, "

Technical Note BN-224, AFOSR- 125, The Institute for Fluid Dynamics
and Applied Mathematics, University of Maryland, Dec. 1960.

-23-




AI0X M3IN ‘1 eoeyr]

TANUM) TIAUIO] ‘[ieH uodurg
sd1eWwaylIeN jo “idagg
ZIMOJIOM [ 108S3joxg

KIs1ap map ‘uojadull g
Aisxaatup uojadulryg
sdnewayle jo -3da

43dNn] ‘pm 'y Io8sajoryg

‘D ' ‘sz uojdurysey
jusunzedaq AaeN (1¢pm 9pon)
83unodoy pue satyddng jo
nearng ‘uosdung -y-'r cap

euelpU] ‘9333eje]
Antsxaatupn anpIing
8dtwouody jo juaunazedag
13319y Aauelg t0989j01 4

elutoji[en ‘Aarayaag
RlUIOJI[R) Jo Aj1sadajup
§21wouody jo juawizeda
I9upey ‘Y J0883jox

Kes1ar map ‘uojasutra g

3931)g nesseN v 26

K318 19A1Un uojadutayg

199f0o1gq yozeesay 821Wou0dy
uzajsusdio reysQ 10883jo1 4

"D '@ ‘L uoldurysepy

"M N 1936 puzz - 0,
Ansaatup ‘ysepy ‘oan ayy
109foxg yosieasay sousi18org
MOTIBN 'H A, I0883jo1yg

qIog maN ‘hoxy

2IMusu] d1uyda3h[og 13e[a8sUaYy
sdnrwWayIeN jo "3dagg

AfWIT g D 10883j01y4

elulojirey ‘piojuelg

Atuf] piojuels ‘ yjep jo 3daq

UllIey [dnwieg 10883j01g

BIUIOJI[®D ‘p7 s3128uy sorg
BIUIOJ1TRD Jo -Alun ‘3d3(o1yg

Yd1easay saduatog juawa Jeuepy

uosxdel ‘Y sowrer 108sajoryg

©l083UUI ‘[ sijodesuuryy
€1083UUL jo A31saaatup
uolenstulwpy gsaulsng jo [ooysg
Zo1Many -7 108895014

PU®IS] ¥poyy ‘77 dduaplaox g
Ais1aatup umoag ‘ ‘yrew jo -ida(
31eD plae(Q l108§3jolg

rlueathsuuag ‘a8arp0n ajeig
Ansasatun sjesg elueardsuua g

34l ‘sdlwouody jo -3daq

193®IN0 g *F 3dudIme] Iossajolg

OO ‘pueraaary

‘Yd3] 3o *isuy asen ‘193U’ 9
Yodeasay swaisdg ‘1030911
UBWYDF pleuo(q logsajoaq

puethrey ‘yieq a8a1i09
pueldren jo awup ‘3da ‘yrep
usyoy *p T Iossdjoryg

SIOUL[]] ‘uojsueay
Ans2aatup uIIsamylIoN
Ansu] restdojouydsay ayy
83UleYD Vv 10883jo1g

‘uuag ‘et ySangsing
jy1eq 4Laruayog

suonyerad( rerdysnpuy
Jo 1013u05 pue Suruuery
‘4331 jo Imnsur 318auren
yseqg ‘' 'n 108sajo1g

elulojife) ‘plojueig
£318194A1Up pIojuURIg

98NOY ®el13g

MOIIY ‘[ Y}2UUIY 10883J014

OO ‘9 puUeaA3[D
ABotouysa 1 jo aymnysuy asen
dnoin yoaeasay suonieaadp

JJOdV [[9ssny I0883j01g

¥yneT g v 1 runy
'lulOojl{e) ‘i euldpeseq
199135 Udaan Iseq 0£01
9930 Yduelg YNO ‘'O°'D

UBWIIIPET ‘[ :UPy
"A°N ‘€1 d20% maN ‘Aempeorgq gp¢
39430 Ydueig YNO ‘'O°D

D "d ‘sz uoiBulysey
A1ojeI0qeT Yoreasay TeaeN

1321J30 UOlIRWIOFU] [ed1UYII ]

‘D 'd ‘sz uojBurysepy
3d13wwoy) jo juswiseds(y
§321413¢ [ed1uyd3 ] JO 2210

rtndatp ‘21 uoyBuijay
uolyelg [[eH uojduiay
19jua H 914136 Judwndog VLSV

YI0X maN ‘A1 10z mapn
‘0°d"J 001 "ON AaeN
99430 Ydouerg YNO ‘'O°D

"D " ‘g7 uojBuiysey
Y2I12363Yy [eaeN Jo 3D15]0
Youerqg soiysnyelg
[esnewayIey pue soys18o ‘pesay

SLY0dINY TVIINHOAL JIIJISSVTIONG ¥OJ 1SIT NOILNGI¥1SIa DIsvd




